

Diagnosing the loss of EPs and causes

M. Garcia-Munoz

University of Seville

Synthetic ITER FILD measurement: Alpha particles losses induced by n=4 RMP

M. Garcia-Munoz et al., Rev. Sci. Instrum. 87, 11D829 (2016)

Outline

- Requirements of a Fast-Ion Loss Detector
- Scintillator-based Fast-Ion Loss Detector (FILD)
- Fast-Ion Losses Induced by:
 - Alfven Eigenmodes
 - Externally Applied Resonant Magnetic Perturbations
 - Edge Localized Modes (ELMs)
- Radial Profiles of Fast-Ion Losses
- Synthetic FILD (FILDSIM)

Outline

- Requirements of a Fast-Ion Loss Detector
- Scintillator-based Fast-Ion Loss Detector (FILD)
- Fast-lon Losses Induced by:
 - Alfven Eigenmodes
 - Externally Applied Resonant Magnetic Perturbations
 - Edge Localized Modes (ELMs)
- Radial Profiles of Fast-Ion Losses
- Synthetic FILD (FILDSIM)

- Constants of motion (E, $\mu,\,P_{\Phi})$ are conserved
- Perturbations break constants of motion

M. Garcia-Munoz | ITER Summer School 2023 | Page 4

Cyclotron motion

- Constants of motion (E, μ, P_Φ) are conserved
- Perturbations break constants of motion
 - > μ ≠ const if

•
$$\Omega_c \, \delta_t \sim 1$$
 , $\rho \frac{\nabla B}{B} \sim 1$

- Constants of motion (E, μ, P_φ) are conserved
- Perturbations break constants of motion
 - > µ ≠ const if
 - $\Omega_c \, \delta_t \sim 1$, $\rho \frac{\nabla B}{B} \sim 1$
 - P_Φ ≠ const in presence of symmetry breaking 3D fields

- Constants of motion (E, μ, P_Φ) are conserved
- Perturbations break constants of motion
 - > µ ≠ const if
 - $\Omega_c \, \delta_t \sim 1$, $\rho \frac{\nabla B}{B} \sim 1$
 - P_Φ ≠ const in presence of symmetry breaking 3D fields

- Constants of motion (E, μ, P_Φ) are conserved
- Perturbations break constants of motion
 - > μ ≠ const if
 - $\Omega_c \, \delta_t \sim 1$, $\rho \frac{\nabla B}{B} \sim 1$
 - P_Φ ≠ const in presence of symmetry breaking 3D fields

Orbit Poloidal Projections Are Not Close in Presence of Perturbations

> Variation in P_{ϕ} produces a radial drift

$$P_{\phi} = mRv_{\phi} - Ze\psi$$

$$\delta P_{\phi} \neq 0 \begin{cases} \delta P_{\phi} < 0 \ \ \text{Outward orbit drift} \\ \delta P_{\phi} > 0 \ \ \text{Inward orbit drift} \end{cases}$$

Large / resonant perturbations lead to large drifts / losses

$$\overleftarrow{\delta P_{\phi} > 0} \quad \overrightarrow{\delta P_{\phi} < 0}$$

Small 3D Perturbations Can Lead to Large Resonant Particle Transport

- Externally applied static 3D fields are excellent control tools to test models
 - Routinely used to control internal MHD fluctuations and, more recently, fast-ion distributions

Small 3D Perturbations Can Lead to Large Resonant Particle Transport

- Externally applied static 3D fields are excellent control tools to test models
 - Routinely used to control internal MHD fluctuations and, more recently, fast-ion distributions

Small 3D Perturbations Can Lead to Large Resonant Particle Transport

- Orbit following codes are used to identify transport mechanisms
 - <δP_Φ> figure of merit calculated by averaging δP_Φ over time with particles started with same z, phi and pitch
 - n=2 3D fields w/o plasma response

L. Sanchis-Sanchez *et al.*, PPCF 61 014038 (2019) M. Garcia-Munoz | ITER Summer School 2023 | Page 12

Combination of Multiple Linear / Non-Linear Resonances Creates an Edge Resonance Transport Layer (ERTL)

 Orbital resonances intrinsic to magnetic background

$$\frac{\omega_b}{\bar{\omega}_d} = \frac{n(l+1)}{p_0(l+1) \pm p'}$$

- n: toroidal mode number
- I: nonlinear harmonic
- p₀: main bounce harmonic
- p': nonlinear bounce harmonic
- Maximum transport caused by a combination of resonances
- Non-linear resonances seem to play a key role

[*] F .Zonca et al, NJP 17 (2015)0130052

 $<\delta P_{\Phi}> < 0$ (blue-black) \rightarrow outwards transport

 $<\delta P_{\Phi} > > 0$ (yellow-white) \rightarrow inwards transport

L. Sanchis-Sanchez *et al.*, PPCF 61 014038 (2019) M. Garcia-Munoz | ITER Summer School 2023 | Page 13

Combination of Multiple Linear / Non-Linear Resonances Creates an Edge Resonance Transport Layer (ERTL)

 Orbital resonances intrinsic to magnetic background

$$\frac{\omega_b}{\bar{\omega}_d} = \frac{n(l+1)}{p_0(l+1) \pm p'}$$

- n: toroidal mode number
- I: nonlinear harmonic
- p₀: main bounce harmonic
- p': nonlinear bounce harmonic
- Maximum transport caused by a combination of resonances
- Non-linear resonances seem to play a key role

[*] F .Zonca et al, NJP 17 (2015)0130052

 $<\delta P_{\Phi} > < 0$ (blue-black) \rightarrow outwards transport

 $<\delta P_{\Phi} > > 0$ (yellow-white) \rightarrow inwards transport

L. Sanchis-Sanchez *et al.*, PPCF 61 014038 (2019) M. Garcia-Munoz | ITER Summer School 2023 | Page 14

Fast-Ion Transport / Loss Mechanisms Given by Wave-Particle Interaction

- Net wave-particle energy and momentum exchange achieved only if particle and wave are kept in phase long enough
- Resonance condition

$$\Omega_{\rm n,p} = n\omega_{\phi} - p\omega_{\theta} - \omega$$

 ω =0 for (quasi)-static perturbations

• Orbital frequencies are given by fastions constants of motion

0.6

Loss ion orbit topology is key to identify loss mechanism

M. Garcia-Munoz *et al.*, NF **51** 103013 (2011) M. Garcia-Munoz | ITER Summer School 2023 | Page 15

E [MeV]

Fast-Ion Transport / Loss Mechanisms Given by Wave-Particle Interaction

- Net wave-particle energy and momentum exchange achieved only if particle and wave are kept in phase long enough
- Resonance condition

$$\Omega_{\rm n,p} = n\omega_{\phi} - p\omega_{\theta} - \omega$$

 ω =0 for (quasi)-static perturbations

• Orbital frequencies are given by fastions constants of motion

Loss ion orbit topology is key to identify loss mechanism

Fast-Ion Heat Loads Are Not Axisymmetric

- Fast-ion loss mechanisms lead to complex 3D heat load patterns on vacuum vessel
- Complex fast-ion distributions
 - Non axisymmetric, e.g.NBI deposition
 - Anysotropic, e.g. NBI and ICRH
- Perturbation spatio-temporal topology

Fast-Ion Heat Loads Are Not Axisymmetric

Fast-ion loss mechanisms lead to complex 3D heat load patterns on vacuum vessel

- Complex fast-ion distributions
 - Non axisymmetric, e.g.
 NBI deposition
 - Anysotropic, e.g. NBI and ICRH
- Perturbation spatio-temporal topology

M. Garcia-Munoz *et al.,* Rev. Sci. Instrum. **87**, 11D829 (2016) M. Garcia-Munoz | ITER Summer School 2023 | Page 18

MHD Induced Fast-Ion Losses Can Damage Vacuum Vessel Components

J. Galdon-Quiroga et al 2018 Nucl. Fusion 58 036005

MHD Induced Fast-Ion Losses Can Damage Vacuum Vessel Components

(a)

(b)

4.62

Time (sec)

4.56

4.58

4.60

5/4 mode

J. Galdon-Quiroga et al 2018 Nucl. Fusion 58 036005

M. Garcia-Munoz | ITER Summer School 2023 | Page 21

Ideal Fast-Ion Loss Detector Covers Entire Phase-Space Volume of Escaping / Lost Ions

- Ideal
- Full 3D wall coverage
- Velocity-space information
- MHz temporal resolution
- Absolute flux

Ideal Fast-Ion Loss Detector Covers Entire Phase-Space Volume of Escaping / Lost Ions

Ideal

- Full 3D wall coverage
- Velocity-space information
- MHz temporal resolution
- Absolute flux

Affordable in present devices

- IR / VIS cameras for full coverage
- Charged particle collectors
- Indirect measurements of confined populations, e.g. neutron deficits

IR / VIS Cameras are Best Monitors for Safe Operation

Full coverage of 3D wall can be "easily" obtained with set of IR / VIS cams

C. J. Lasnier et al., Rev. Sci. Instrum. 85, 11D855 (2014)

IR / VIS Cameras are Best Monitors for Safe Operation

Full coverage of 3D wall can be "easily" obtained with set of IR / VIS cams

IR / VIS Cameras are Best Monitors for Safe Operation

Full coverage of 3D wall can be "easily" obtained with set of IR / VIS cams

Caveats:

- Virtually impossible to distinguish thermal from fast particle loads without modelling
- No velocity-space resolution, i.e. identification of lost orbit topology
- Limited temporal resolution, i.e. identification of MHD fluctuations

Outline

- Requirements of a Fast-Ion Loss Detector
- Scintillator-based Fast-Ion Loss Detector (FILD)
- Fast-Ion Losses Induced by:
 - Alfven Eigenmodes
 - Externally Applied Resonant Magnetic Perturbations
 - Edge Localized Modes (ELMs)
- Radial Profiles of Fast-Ion Losses
- Synthetic FILD (FILDSIM)

Fast-Ion Loss Detector (FILD^{1,2}) Provides Full Information on Velocity-Space of Escaping Ions

- FILD measures the pitch-angle and energy of lost fast ions
- Large bandwidth allows measurements at Alfvén Eigenmode frequencies (~100kHz) – key for identifying coherent losses and impact of individual modes
- Local velocity-space measurements like these help to isolate fundamental mechanisms
- Installed in virtually all fusion devices. Design for W7-X, JT-60SA and ITER on-going

¹S. J. Zweben, Rev. Sci. Instrum. **57**, 1774 (1986)
 ²M. Garcia-Munoz et al, Rev. Sci. Instrum. **80** 053003 (2009)
 M. Garcia-Munoz | ITER Summer School 2023 | Page 27

FILD Set-Up Overview

Simultaneous imaging of scintillator with double system

- CCD camera (slow but high spatial resolution)
- Array of 20 photomultiplier tubes (MHz Alfvénic temporal resolution)

Safety & IR-Camera view

Fast-Ion Loss Detector (FILD^{1,2}) Provides Full Information on Velocity-Space of Escaping Ions

FILD Spectrogram Clearly Identifies MHD Fluctuations Responsible For Fast-Ion Losses

M. Garcia-Munoz et al, Phys. Rev. Lett. 104, 185002 (2010)

Faraday Cup Measurement Embedded in Scintillator Plate

Secondary absolute measurements of fast-ion loss flux

Secondary plate isolated from the main plate to substrate background noise

FILD Embedded Faraday Cup Measurement Successfully Tested in AUG

Faraday cup measurement embedded in scintillator plate gives timeresolved measurement of absolute flux of impinging ions

MHD Induced Fast-Ion Losses Can Damage Vacuum Vessel Components

(a)

(b)

4.62

MHD Induced Fast-Ion Losses Can Damage Vacuum Vessel Components

MHz temporal resolution is key to identify MHD fluctuations

Outline

- Requirements of a Fast-Ion Loss Detector
- Scintillator-based Fast-Ion Loss Detector (FILD)
- Fast-Ion Losses Induced by:
 - Alfven Eigenmodes
 - Externally Applied Resonant Magnetic Perturbations
 - Edge Localized Modes (ELMs)
- Radial Profiles of Fast-Ion Losses
- Synthetic FILD (FILDSIM)

Alfvenic Temporal Resolution is Key to Identify Loss Mechanisms

 Coherent and incoherent components of FILD signal identify convective and diffusive losses

Alfvenic Temporal Resolution is Key to Identify Loss Mechanisms

- Coherent and incoherent components of FILD signal identify convective and diffusive losses
- Coherent losses have linear dependence with perturbation amplitude indicating convective character
- Incoherent losses have quadratic dependence on perturbation amplitude indicating diffusive character

Static n=2 MPs Cause Strong Fast-Ion Losses at Low q_{95} and Density / Collisionality

As density / collisionality increases, fast-ion losses become weaker

Fast-ion losses and density pump-out follow same collisionality trend

FILD1/FILD2 signals show clear toroidal asymmetry in fast-ion losses

M. Garcia-Munoz et al., Plasma Phys. Control. Fusion 55, 124014 (2013)

FILD Measures Significant Changes in Escaping Ion Velocity-Space with MPs

- Without MPs, only velocity-space areas corresponding to prompt losses are observed
- During MP phase, multiple additional pitchangles and energies are observed

FILD Measures Significant Changes in Escaping Ion Velocity-Space with MPs

- Without MPs, only velocity-space areas corresponding to prompt losses are observed
- During MP phase, multiple additional pitchangles and energies are observed

COILS OFF COILS ON

M. Garcia-Munoz et al., Plasma Phys. Control. Fusion 55, 124014 (2013)

Measured fast-ion losses due to MPs can be up to an order of magnitude higher than nominal NBI prompt losses w/o MPs

During MP phase bursting ELM induced fast-ion losses are replaced by DC losses

Without MPs, fast-ion losses are:

- NBI prompt losses (DC component)
- Bursting ELM induced fastion losses

Different fast-ion temporal response to increasing (10 ms) and decaying (200 ms) MP

ELM Induced Fast-Ion Losses Are Routinely Observed in H-Mode Discharges

Multiple bursts (filaments) observed during each ELM

5

4

FILD (a.u.) c

Filamentary structure not \geq same at different locations (FILD1 vs FILD2)

ELM Induced Fast-Ion Losses Are Routinely Observed in H-Mode Discharges

M. Garcia-Munoz | ITER Summer School 2023 | Page 43

R(m)

- Multiple bursts (filaments) observed during each ELM
- Filamentary structure not same at different locations (FILD1 vs FILD2)

Outline

- Requirements of a Fast-Ion Loss Detector
- Scintillator-based Fast-Ion Loss Detector (FILD)
- Fast-lon Losses Induced by:
 - Alfven Eigenmodes
 - Externally Applied Resonant Magnetic Perturbations
 - Edge Localized Modes (ELMs)
- Radial Profiles of Fast-Ion Losses
- Synthetic FILD (FILDSIM)

- Phase-space coordinates (E, μ , P_{ϕ}) are constant along fast-ion trajectory
- FILD covers a 2D surface in phase-space of the fast-ion distribution edge

- E: Particle energy
- μ: Magnetic moment
- P_{ϕ} : Toroidal canonical momentum

J. Gonzalez-Martin et al., HTPD 2020

- Phase-space coordinates (E, μ , P_{ϕ}) are constant along fast-ion trajectory
- FILD covers a 2D surface in phase-space of the fast-ion distribution edge

- E: Particle energy
- μ: Magnetic moment

 P_{ϕ} : Toroidal canonical momentum

J. Gonzalez-Martin et al., HTPD 2020

- Phase-space coordinates (E, μ , P_{ϕ}) are constant along fast-ion trajectory
- FILD covers a 2D surface in phase-space of the fast-ion distribution edge

- E: Particle energy
- μ: Magnetic moment

 P_{ϕ} : Toroidal canonical momentum

J. Gonzalez-Martin et al., HTPD 2020

- Phase-space coordinates (E, μ , P_{ϕ}) are constant along fast-ion trajectory
- FILD covers a 2D surface in phase-space of the fast-ion distribution edge
- FILD poloidal array increases phase-space coverage and diagnoses 3D losses
 - > TF ripple, externally applied MPs, MHD...

- Phase-space coordinates (E, μ , P_{ϕ}) are constant along fast-ion trajectory
- FILD covers a 2D surface in phase-space of the fast-ion distribution edge
- FILD poloidal array increases phase-space coverage and diagnoses 3D losses
 - ➢ TF ripple, externally applied MPs, MHD...
- New FILD sweeping enables diagnosing a 3D phase-space volume

- In-situ system installed under ECRH mirror holder w/o mechanical contact with a port plug
- Probe head is pulled back by a retaining spring
- Energized coil tries to align with AUG toroidal field producing a torque that overcome retaining spring force*
- Coil energized within 5ms by DCS via a programmable power supply

*Similar to A. Schmid, A. Herrmann et *al.*, RSI **78**, 053502 (2007) and J. P Gunn and J.Y. Pascal, RSI **82**, 123505 (2011)

J. Gonzalez-Martin et al 2019 JINST 14 C11005

- In-situ system installed under ECRH mirror holder w/o mechanical contact with a port plug
- Probe head is pulled back by a retaining spring
- Energized coil tries to align with AUG toroidal field producing a torque that overcome retaining spring force*
- Coil energized within 5ms by DCS via a programmable power supply

*Similar to A. Schmid, A. Herrmann et *al.*, RSI **78**, 053502 (2007) and J. P Gunn and J.Y. Pascal, RSI **82**, 123505 (2011)

J. Gonzalez-Martin et al 2019 JINST 14 C11005

- In-situ system installed under ECRH mirror holder w/o mechanical contact with a port plug
- Probe head is pulled back by a retaining spring
- Energized coil tries to align with AUG toroidal field producing a torque that overcome retaining spring force*
- Coil energized within 5ms by DCS via a programmable power supply

*Similar to A. Schmid, A. Herrmann et *al.*, RSI **78**, 053502 (2007) and J. P Gunn and J.Y. Pascal, RSI **82**, 123505 (2011)

J. Gonzalez-Martin et al 2019 JINST 14 C11005

- In-situ system installed under ECRH mirror holder w/o mechanical contact with a port plug
- Probe head is pulled back by a retaining spring
- Energized coil tries to align with AUG toroidal field producing a torque that overcome retaining spring force*
- Coil energized within 5ms by DCS via a programmable power supply

*Similar to A. Schmid, A. Herrmann et *al.*, RSI **78**, 053502 (2007) and J. P Gunn and J.Y. Pascal, RSI **82**, 123505 (2011)

J. Gonzalez-Martin et al 2019 JINST 14 C11005

FILD Swept to Obtain Radial Measurements

- 25mm profiles of fast-ion losses every ~200ms
- FILD detects both NBI and ICRH fast-ions

FILD Swept to Obtain Radial Measurements

- 25mm profiles of fast-ion losses every ~200ms
- FILD detects both NBI and ICRH fast-ions

$R_{FIID} = R_{FIID}(t)$

- Radial measurements are a combination of:

- Time-resolved velocity-space measurements
- Time-resolved FILD location

 $FILD = FILD(E, Pitch, R_{FILD})$

M. Garcia-Munoz | ITER Summer School 2023 | Page 56

Radially-Resolved Velocity-Space Measurements

Time-resolved velocity-space

measurements

Radial measurements are a combination of:

Time-resolved FILD location

• Regions of interest are defined on velocity-space and plotted radially

• Regions of interest are defined on velocity-space and plotted radially

Regions of interest are defined on velocity-space and plotted radially

NBI ions have larger radial gradient than ICRH ions

Regions of interest are defined on velocity-space and plotted radially

NBI ions have larger radial gradient than ICRH ions

 For ICRH ions, each energy has a different radial profile

Regions of interest are defined on velocity-space and plotted radially

NBI ions have larger radial gradient than ICRH ions

• For ICRH ions, each energy has a different radial profile

 Two different pitch angle at injection energy are reproduced by ASCOT*

- Two different pitch angle at injection energy are reproduced by ASCOT*
 - ➤ #6 Low field side (Trapped)
 - #8 High field side (Passing)

- Two different pitch angle at injection energy are reproduced by ASCOT*
 - ➤ #6 Low field side (Trapped)
 - ➤ #8 High field side (Passing)

- Particles ionized at the low field side are captured ~1cm earlier by FILD
 - FILD scans through the passing/lost boundary

*E. Hirvijoki et al. Computer Phys. Com.**185**, 1310-1321 (2014)

- Two different pitch angle at injection energy are reproduced by ASCOT*
 - ➤ #6 Low field side (Trapped)
 - #8 High field side (Passing)

- Particles ionized at the low field side are captured ~1cm earlier by FILD
 - FILD scans through the passing/lost boundary

 ASCOT reproduces radially-resolved beam deposition profile measurements

*E. Hirvijoki et al. Computer Phys. Com.**185**, 1310-1321 (2014)

 MHD-induced FIL only observed when FILD is inserted

MHD-induced FIL only observed
 when FILD is inserted

• Around mode local maximum:

MHD-induced FIL only observed
 when FILD is inserted

- Around mode local maximum:
 Averaged Ell D signal (E)
 - Averaged FILD signal (F)

U STRAND

MHD-induced FIL only observed
 when FILD is inserted

- Around mode local maximum:
 - Averaged FILD signal (F)
 - Convective FILD at mode frequency (ΔF)

U STRAND

MHD-induced FIL only observed
 when FILD is inserted

- Around mode local maximum:
 - Averaged FILD signal (F)
 - Convective FILD at mode frequency (ΔF)

The Light Ion Beam Probe (LIBP) Technique* Uses NBI Prompt Losses to Estimate Orbit Deflection (ξ)

 Provides experimental estimation of fast-ion orbit displacement due to internal perturbations

 lons lost on their first poloidal transit ensures measurement of orbit deflection from a single pass through a perturbation

First Radial Measurements of MHD-Induced Fast-Ion Losses

• MHD-induced FIL only observed when FILD is inserted

- Around mode local maximum:
 - Averaged FILD signal (F)
 - Convective FILD at mode frequency (ΔF)
- Radial profiles of F and ΔF used to infer orbit displacement (ξ)

First Radial Measurements of MHD-Induced Fast-Ion Losses

MHD-induced FIL only observed
when FILD is inserted

- Around mode local maximum:
 - Averaged FILD signal (F)
 - Convective FILD at mode frequency (ΔF)

 Radial profiles of F and ΔF used to infer orbit displacement (ξ)

• Orbit displacement at FILD location transformed to inner banana ρ_{pol} via measured orbits

M. Garcia-Munoz | ITER Summer School 2023 | Page 76

Orbit Kick Agrees with ECE Radial Measurement

- Orbit displacement at FILD location transformed to inner banana ρ_{pol} via measured orbits

- Orbit displacement at FILD location transformed to inner banana ρ_{pol} via measured orbits

UNERSIDAD ON

• Orbit displacement at FILD location transformed to inner banana ρ_{pol} via measured orbits

Despite limited radial range, FILD
agrees with reconstructed ECE profile

- Orbit displacement at FILD location transformed to inner banana ρ_{pol} via measured orbits

• Despite limited radial range, FILD agrees with reconstructed ECE profile

• FILD limited range can be expanded by combining multiple orbits (APD pixels)

Outline

- Requirements of a Fast-Ion Loss Detector
- Scintillator-based Fast-Ion Loss Detector (FILD)
- Fast-lon Losses Induced by:
 - Alfven Eigenmodes
 - Externally Applied Resonant Magnetic Perturbations
 - Edge Localized Modes (ELMs)
- Radial Profiles of Fast-Ion Losses
- Synthetic FILD (FILDSIM)

Pitch angle

Pitch angle

Pitch angle M. Garcia-Munoz | ITER Summer School 2023 | Page 82

Energy

Pitch angle

$$S_{ij} = \mathbf{W_{ijkl}} P_{kl}$$

Pitch angle M. Garcia-Munoz | ITER Summer School 2023 | Page 83

Energy

Pitch angle

Energy $S_{ij} = \mathbf{W}_{ijkl} P_{kl}$

Pitch angle M. Garcia-Munoz | ITER Summer School 2023 | Page 84

M. Garcia-Munoz | ITER Summer School 2023 | Page 87

JVERSIDA0

$$\Gamma_s = \int \int w \cdot \Gamma_p \, d\Lambda \, d\rho$$

 $Γ_p$: Incident ion flux at pinhole $Γ_s$: Emitted photon flux by scintillator

$$\Gamma_s = \int \int w \cdot \Gamma_p \, d\Lambda \, d\rho$$

 $Γ_p$: Incident ion flux at pinhole $Γ_s$: Emitted photon flux by scintillator

 $w = T \cdot \epsilon$ — Weight function

T — Transfer function (accounts for detector resolution)

 ϵ — Scintillator efficiency

$$T = \frac{f_{col}}{2\pi\sigma_{\rho}\sigma_{\Lambda}} \cdot exp\left[-\frac{(\rho'_{L}-\rho_{L})^{2}}{2\sigma_{\rho}^{2}} - \frac{(\Lambda'-\Lambda)^{2}}{2\sigma_{\Lambda}^{2}}\right] \cdot \left[1 + erf\left(\alpha_{\rho} \cdot \frac{(\rho'_{L}-\rho_{L})}{\sqrt{2}\sigma_{\rho}}\right)\right]$$

 $\Gamma_{s} = \int \int w \cdot \Gamma_{p} \, d\Lambda \, d\rho$

 Γ_p : Incident ion flux at pinhole Γ_s : Emitted photon flux by scintillator

 $w = T \cdot \epsilon$ — Weight function

T — Transfer function (accounts for detector resolution)

 ϵ — Scintillator efficiency

$$T = \frac{f_{col}}{2\pi\sigma_{\rho}\sigma_{\Lambda}} \cdot exp\left[-\frac{(\rho'_{L}-\rho_{L})^{2}}{2\sigma_{\rho}^{2}} - \frac{(\Lambda'-\Lambda)^{2}}{2\sigma_{\Lambda}^{2}}\right] \cdot \left[1 + erf\left(\alpha_{\rho} \cdot \frac{(\rho'_{L}-\rho_{L})}{\sqrt{2}\sigma_{\rho}}\right)\right]$$

 $\Gamma_{s} = \int \int w \cdot \Gamma_{p} \, d\Lambda \, d\rho$

 $w = T \cdot \epsilon$ — Weight function

T — Transfer function (accounts for detector resolution)

 ϵ — Scintillator efficiency

$$T = \frac{f_{col}}{2\pi\sigma_{\rho}\sigma_{\Lambda}} \cdot exp\left[-\frac{(\rho_{L}' - \rho_{L})^{2}}{2\sigma_{\rho}^{2}} - \frac{(\Lambda' - \Lambda)^{2}}{2\sigma_{\Lambda}^{2}}\right] \cdot \left[1 + erf\left(\alpha_{\rho} \cdot \frac{(\rho_{L}' - \rho_{L})}{\sqrt{2}\sigma_{\rho}}\right)\right]$$

$$\Gamma_{s} = \int \int w \cdot \Gamma_{p} \, d\Lambda \, d\rho$$

 $w = T \cdot \epsilon$ — Weight function

T — Transfer function (accounts for detector resolution)

 ϵ – Scintillator efficiency

$$T = \frac{f_{col}}{2\pi\sigma_{\rho}\sigma_{\Lambda}} \cdot exp\left[-\frac{(\rho'_{L}-\rho_{L})^{2}}{2\sigma_{\rho}^{2}} - \frac{(\Lambda'-\Lambda)^{2}}{2\sigma_{\Lambda}^{2}}\right] \cdot \left[1 + \operatorname{erf}\left(\alpha_{\rho} \cdot \frac{(\rho'_{L}-\rho_{L})}{\sqrt{2}\sigma_{\rho}}\right)\right]$$

Absolute Flux Obtained from FILD Calibration

$$\Gamma_s = \int \int R \cdot C \cdot I \, dp \, dq$$

$$\Gamma_s$$
: Emitted photon flux by scintillator

R — Mapping function pixel space > velocity space I: Pixel intensity

$$C - Calibration function$$
$$C_{pq} = \frac{1}{A_P \cdot \Delta t \cdot \xi_{pq}} = \frac{\Phi_{IS} \cdot S_{\Omega} \cdot \Delta t_{IS}}{A_P \cdot \Delta t \cdot I_{pq}^{IS}},$$

M. Garcia-Munoz | ITER Summer School 2023 | Page 93

NVERSID40

Absolute Flux Obtained from FILD Calibration

ALL in one

$$\int \int R \cdot C \cdot \mathbf{I} \, dp \, dq = \int \int T \cdot \epsilon \cdot \Gamma_p \, d\Lambda \, d\rho$$

M. Garcia-Munoz | ITER Summer School 2023 | Page 94

AVERSID40

FILDSIM Has Been Widely Used to Design FILD Systems...

ITER FILD design includes estimated FC signal with nuclear background (gammas + charge particles generated in scintillator itself)

... Characterise FILD Response...

FILDSIM is routinely used to obtain absolute fluxes of fast-ion losses

M. Garcia-Munoz | ITER Summer School 2023 | Page 96

ANERSIDAD D

Observation of beam ions acceleration during ELMs*

- Main and half energy components are well matched
- Well localized energy distribution rather than a large spread
- Recovered synthetic scintillator signal in good agreement with experimental measurement

*J.Galdon-Quiroga et al., PRL (2018)

Final Remarks

- Fast-ions are very well confined in tokamaks in the absence of MHD perturbations
- However, subject to transport / loss by a large spectrum of MHD perturbations (internal + external)
- At present, there is no technique capable of covering full phase-space of escaping ions
- Combination of diagnostics and modelling tools give confident predictions towards future devices

Synthetic ITER FILD measurement: Alpha particles losses induced by n=4 RMP

M. Garcia-Munoz et al., Rev. Sci. Instrum. 87, 11D829 (2016)